3.310 \(\int \frac{(a+a \cos (c+d x))^3}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=187 \[ \frac{68 a^3 \sin (c+d x)}{45 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{6 a^3 \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{2 a^3 \sin (c+d x)}{9 d \sec ^{\frac{7}{2}}(c+d x)}+\frac{44 a^3 \sin (c+d x)}{21 d \sqrt{\sec (c+d x)}}+\frac{44 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 d}+\frac{68 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{15 d} \]

[Out]

(68*a^3*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(15*d) + (44*a^3*Sqrt[Cos[c + d*x]]*E
llipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*a^3*Sin[c + d*x])/(9*d*Sec[c + d*x]^(7/2)) + (6*a^3*S
in[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (68*a^3*Sin[c + d*x])/(45*d*Sec[c + d*x]^(3/2)) + (44*a^3*Sin[c + d*x]
)/(21*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.234638, antiderivative size = 187, normalized size of antiderivative = 1., number of steps used = 17, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {3238, 3791, 3769, 3771, 2639, 2641} \[ \frac{68 a^3 \sin (c+d x)}{45 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{6 a^3 \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{2 a^3 \sin (c+d x)}{9 d \sec ^{\frac{7}{2}}(c+d x)}+\frac{44 a^3 \sin (c+d x)}{21 d \sqrt{\sec (c+d x)}}+\frac{44 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 d}+\frac{68 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{15 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^3/Sec[c + d*x]^(3/2),x]

[Out]

(68*a^3*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(15*d) + (44*a^3*Sqrt[Cos[c + d*x]]*E
llipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*a^3*Sin[c + d*x])/(9*d*Sec[c + d*x]^(7/2)) + (6*a^3*S
in[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (68*a^3*Sin[c + d*x])/(45*d*Sec[c + d*x]^(3/2)) + (44*a^3*Sin[c + d*x]
)/(21*d*Sqrt[Sec[c + d*x]])

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3791

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Int[Expand
Trig[(a + b*csc[e + f*x])^m*(d*csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
 && IGtQ[m, 0] && RationalQ[n]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+a \cos (c+d x))^3}{\sec ^{\frac{3}{2}}(c+d x)} \, dx &=\int \frac{(a+a \sec (c+d x))^3}{\sec ^{\frac{9}{2}}(c+d x)} \, dx\\ &=\int \left (\frac{a^3}{\sec ^{\frac{9}{2}}(c+d x)}+\frac{3 a^3}{\sec ^{\frac{7}{2}}(c+d x)}+\frac{3 a^3}{\sec ^{\frac{5}{2}}(c+d x)}+\frac{a^3}{\sec ^{\frac{3}{2}}(c+d x)}\right ) \, dx\\ &=a^3 \int \frac{1}{\sec ^{\frac{9}{2}}(c+d x)} \, dx+a^3 \int \frac{1}{\sec ^{\frac{3}{2}}(c+d x)} \, dx+\left (3 a^3\right ) \int \frac{1}{\sec ^{\frac{7}{2}}(c+d x)} \, dx+\left (3 a^3\right ) \int \frac{1}{\sec ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{2 a^3 \sin (c+d x)}{9 d \sec ^{\frac{7}{2}}(c+d x)}+\frac{6 a^3 \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{6 a^3 \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 a^3 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{1}{3} a^3 \int \sqrt{\sec (c+d x)} \, dx+\frac{1}{9} \left (7 a^3\right ) \int \frac{1}{\sec ^{\frac{5}{2}}(c+d x)} \, dx+\frac{1}{5} \left (9 a^3\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{7} \left (15 a^3\right ) \int \frac{1}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 a^3 \sin (c+d x)}{9 d \sec ^{\frac{7}{2}}(c+d x)}+\frac{6 a^3 \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{68 a^3 \sin (c+d x)}{45 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{44 a^3 \sin (c+d x)}{21 d \sqrt{\sec (c+d x)}}+\frac{1}{15} \left (7 a^3\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{7} \left (5 a^3\right ) \int \sqrt{\sec (c+d x)} \, dx+\frac{1}{3} \left (a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx+\frac{1}{5} \left (9 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=\frac{18 a^3 \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{5 d}+\frac{2 a^3 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{2 a^3 \sin (c+d x)}{9 d \sec ^{\frac{7}{2}}(c+d x)}+\frac{6 a^3 \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{68 a^3 \sin (c+d x)}{45 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{44 a^3 \sin (c+d x)}{21 d \sqrt{\sec (c+d x)}}+\frac{1}{15} \left (7 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx+\frac{1}{7} \left (5 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{68 a^3 \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{15 d}+\frac{44 a^3 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{21 d}+\frac{2 a^3 \sin (c+d x)}{9 d \sec ^{\frac{7}{2}}(c+d x)}+\frac{6 a^3 \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{68 a^3 \sin (c+d x)}{45 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{44 a^3 \sin (c+d x)}{21 d \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 2.18728, size = 156, normalized size = 0.83 \[ \frac{a^3 \left (\frac{22848 i \, _2F_1\left (-\frac{1}{4},\frac{1}{2};\frac{3}{4};-e^{2 i (c+d x)}\right )}{\sqrt{1+e^{2 i (c+d x)}}}-5280 i \sqrt{1+e^{2 i (c+d x)}} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-e^{2 i (c+d x)}\right ) \sec (c+d x)+5820 \sin (c+d x)+2044 \sin (2 (c+d x))+540 \sin (3 (c+d x))+70 \sin (4 (c+d x))-11424 i\right )}{2520 d \sqrt{\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^3/Sec[c + d*x]^(3/2),x]

[Out]

(a^3*(-11424*I + ((22848*I)*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))])/Sqrt[1 + E^((2*I)*(c + d*
x))] - (5280*I)*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]*Sec[c + d
*x] + 5820*Sin[c + d*x] + 2044*Sin[2*(c + d*x)] + 540*Sin[3*(c + d*x)] + 70*Sin[4*(c + d*x)]))/(2520*d*Sqrt[Se
c[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 2.276, size = 260, normalized size = 1.4 \begin{align*} -{\frac{4\,{a}^{3}}{315\,d}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 560\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{11}-600\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{9}+212\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{7}+66\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{5}-430\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+165\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -357\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +192\,\cos \left ( 1/2\,dx+c/2 \right ) \right ){\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^3/sec(d*x+c)^(3/2),x)

[Out]

-4/315*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^3*(560*cos(1/2*d*x+1/2*c)^11-600*cos(1/2*d*x+
1/2*c)^9+212*cos(1/2*d*x+1/2*c)^7+66*cos(1/2*d*x+1/2*c)^5-430*cos(1/2*d*x+1/2*c)^3+165*(sin(1/2*d*x+1/2*c)^2)^
(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-357*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+192*cos(1/2*d*x+1/2*c))/(-2*sin(1/2*d
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^3/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^3/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{a^{3} \cos \left (d x + c\right )^{3} + 3 \, a^{3} \cos \left (d x + c\right )^{2} + 3 \, a^{3} \cos \left (d x + c\right ) + a^{3}}{\sec \left (d x + c\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^3/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((a^3*cos(d*x + c)^3 + 3*a^3*cos(d*x + c)^2 + 3*a^3*cos(d*x + c) + a^3)/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a^{3} \left (\int \frac{3 \cos{\left (c + d x \right )}}{\sec ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx + \int \frac{3 \cos ^{2}{\left (c + d x \right )}}{\sec ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx + \int \frac{\cos ^{3}{\left (c + d x \right )}}{\sec ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx + \int \frac{1}{\sec ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**3/sec(d*x+c)**(3/2),x)

[Out]

a**3*(Integral(3*cos(c + d*x)/sec(c + d*x)**(3/2), x) + Integral(3*cos(c + d*x)**2/sec(c + d*x)**(3/2), x) + I
ntegral(cos(c + d*x)**3/sec(c + d*x)**(3/2), x) + Integral(sec(c + d*x)**(-3/2), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^3/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^3/sec(d*x + c)^(3/2), x)